Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Front Robot AI ; 11: 1287446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711813

RESUMO

A key objective of tissue engineering (TE) is to produce in vitro funcional grafts that can replace damaged tissues or organs in patients. TE uses bioreactors, which are controlled environments, allowing the application of physical and biochemical cues to relevant cells growing in biomaterials. For soft musculoskeletal (MSK) tissues such as tendons, ligaments and cartilage, it is now well established that applied mechanical stresses can be incorporated into those bioreactor systems to support tissue growth and maturation via activation of mechanotransduction pathways. However, mechanical stresses applied in the laboratory are often oversimplified compared to those found physiologically and may be a factor in the slow progression of engineered MSK grafts towards the clinic. In recent years, an increasing number of studies have focused on the application of complex loading conditions, applying stresses of different types and direction on tissue constructs, in order to better mimic the cellular environment experienced in vivo. Such studies have highlighted the need to improve upon traditional rigid bioreactors, which are often limited to uniaxial loading, to apply physiologically relevant multiaxial stresses and elucidate their influence on tissue maturation. To address this need, soft bioreactors have emerged. They employ one or more soft components, such as flexible soft chambers that can twist and bend with actuation, soft compliant actuators that can bend with the construct, and soft sensors which record measurements in situ. This review examines types of traditional rigid bioreactors and their shortcomings, and highlights recent advances of soft bioreactors in MSK TE. Challenges and future applications of such systems are discussed, drawing attention to the exciting prospect of these platforms and their ability to aid development of functional soft tissue engineered grafts.

3.
Nat Commun ; 15(1): 3122, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600073

RESUMO

In chloroplasts, insertion of proteins with multiple transmembrane domains (TMDs) into thylakoid membranes usually occurs in a co-translational manner. Here, we have characterized a thylakoid protein designated FPB1 (Facilitator of PsbB biogenesis1) which together with a previously reported factor PAM68 (Photosynthesis Affected Mutant68) is involved in assisting the biogenesis of CP47, a subunit of the Photosystem II (PSII) core. Analysis by ribosome profiling reveals increased ribosome stalling when the last TMD segment of CP47 emerges from the ribosomal tunnel in fpb1 and pam68. FPB1 interacts with PAM68 and both proteins coimmunoprecipitate with SecY/E and Alb3 as well as with some ribosomal components. Thus, our data indicate that, in coordination with the SecY/E translocon and the Alb3 integrase, FPB1 synergistically cooperates with PAM68 to facilitate the co-translational integration of the last two CP47 TMDs and the large loop between them into thylakoids and the PSII core complex.


Assuntos
Complexo de Proteína do Fotossistema II , Tilacoides , Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Ribossomos/metabolismo , Tilacoides/metabolismo
4.
Environ Sci Technol ; 58(14): 6415-6424, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38528735

RESUMO

The total oxidizable precursor (TOP) assay has been extensively used for detecting PFAS pollutants that do not have analytical standards. It uses hydroxyl radicals (HO•) from the heat activation of persulfate under alkaline pH to convert H-containing precursors to perfluoroalkyl carboxylates (PFCAs) for target analysis. However, the current TOP assay oxidation method does not apply to emerging PFAS because (i) many structures do not contain C-H bonds for HO• attack and (ii) the transformation products are not necessarily PFCAs. In this study, we explored the use of classic acidic persulfate digestion, which generates sulfate radicals (SO4-•), to extend the capability of the TOP assay. We examined the oxidation of Nafion-related ether sulfonates that contain C-H or -COO-, characterized the oxidation products, and quantified the F atom balance. The SO4-• oxidation greatly expanded the scope of oxidizable precursors. The transformation was initiated by decarboxylation, followed by various spontaneous steps, such as HF elimination and ester hydrolysis. We further compared the oxidation of legacy fluorotelomers using SO4-• versus HO•. The results suggest novel product distribution patterns, depending on the functional group and oxidant dose. The general trends and strategies were also validated by analyzing a mixture of 100000- or 10000-fold diluted aqueous film-forming foam (containing various fluorotelomer surfactants and organics) and a spiked Nafion precursor. Therefore, (1) the combined use of SO4-• and HO• oxidation, (2) the expanded list of standard chemicals, and (3) further elucidation of SO4-• oxidation mechanisms will provide more critical information to probe emerging PFAS pollutants.


Assuntos
Poluentes Ambientais , Polímeros de Fluorcarboneto , Fluorocarbonos , Poluentes Químicos da Água , Éter , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Ácidos Carboxílicos , Éteres , Alcanossulfonatos , Etil-Éteres , Digestão , Estresse Oxidativo
5.
Adv Mater ; : e2309774, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490747

RESUMO

Tissue adhesives are promising alternatives to sutures and staples to achieve wound closure and hemostasis. However, they often do not work well on tissues that are soaked in blood or other biological fluids, and organs that are typically exposed to a variety of harsh environments such as different pH values, nonhomogeneous distortions, continuous expansions and contractions, or high pressures. In this study, a nature-derived multilayered hetero-bioadhesive patch (skin secretion of Andrias davidianus (SSAD)-Patch) based on hydrophilic/hydrophobic pro-healing bioadhesives derived from the SSAD is developed, which is designed to form pressure-triggered strong adhesion with wet tissues. The SSAD-Patch is successfully applied for the sealing and healing of tissue defects within 10 s in diverse extreme injury scenarios in vivo including rat stomach perforation, small intestine perforation, fetal membrane defect, porcine carotid artery incision, and lung lobe laceration. The findings reveal a promising new type of self-adhesive regenerative SSAD-Patch, which is potentially adaptable to broad applications (under different pH values and air or liquid pressures) in sutureless wound sealing and healing.

6.
Cell Rep Med ; 5(3): 101477, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508143

RESUMO

Metabolic (dysfunction)-associated steatohepatitis (MASH) is the advanced stage of metabolic (dysfunction)-associated fatty liver disease (MAFLD) lacking approved clinical drugs. Adenosine A1 receptor (A1R), belonging to the G-protein-coupled receptors (GPCRs) superfamily, is mainly distributed in the central nervous system and major peripheral organs with wide-ranging physiological functions; however, the exact role of hepatic A1R in MAFLD remains unclear. Here, we report that liver-specific depletion of A1R aggravates while overexpression attenuates diet-induced metabolic-associated fatty liver (MAFL)/MASH in mice. Mechanistically, activation of hepatic A1R promotes the competitive binding of sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) to sequestosome 1 (SQSTM1), rather than protein kinase A (PKA) leading to SCAP degradation in lysosomes. Reduced SCAP hinders SREBP1c/2 maturation and thus suppresses de novo lipogenesis and inflammation. Higher hepatic A1R expression is observed in patients with MAFL/MASH and high-fat diet (HFD)-fed mice, which is supposed to be a physiologically adaptive response because A1R agonists attenuate MAFL/MASH in an A1R-dependent manner. These results highlight that hepatic A1R is a potential target for MAFL/MASH therapy.


Assuntos
Fígado Gorduroso , Receptor A1 de Adenosina , Humanos , Camundongos , Animais , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/metabolismo , Fígado Gorduroso/tratamento farmacológico , Lipogênese/genética , Dieta Hiperlipídica/efeitos adversos
7.
Innovation (Camb) ; 5(2): 100591, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38414519

RESUMO

Electricity is the lifeblood of modern society. However, the predominant source of electricity generation still relies on non-renewable fossil fuels, whose combustion releases greenhouse gases contributing to global warming. The increasing demand for energy and escalating environmental concerns necessitate proactive measures to develop innovative green energy technologies capable of both cooling the Earth and generating electricity. Here, we look forward to an interdisciplinary power system integrating solar absorbers, radiative coolers, and thermoelectric generators. This system can simultaneously harvest thermal energy from the sun and from cold space, thereby transforming the challenges posed by global warming into opportunities for the production of clean electricity. We underscore recent advancements in this field and address key challenges while also exploring forward-looking opportunities in the foreseeable future. The proposed integrated energy technology achieves uninterrupted power supply through the unrestricted capture of thermal energy, offering a robust alternative pathway for next-generation sustainable energy technologies.

8.
Circ Res ; 134(2): 165-185, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38166463

RESUMO

BACKGROUND: Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS: We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS: Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Eferocitose , Fator 6 Associado a Receptor de TNF/metabolismo , Aterosclerose/metabolismo , Inflamação/genética , Camundongos Knockout , Fenótipo , Apolipoproteínas E , Fatores Reguladores de Interferon/genética , Camundongos Endogâmicos C57BL
9.
Cancer Lett ; 584: 216643, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246220

RESUMO

In the realm of cancer therapeutics and resistance, kinases play a crucial role, particularly in gastric cancer (GC). Our study focused on platinum-based chemotherapy resistance in GC, revealing a significant reduction in homeodomain-interacting protein kinase 3 (HIPK3) expression in platinum-resistant tumors through meticulous analysis of transcriptome datasets. In vitro and in vivo experiments demonstrated that HIPK3 knockdown enhanced tumor proliferation and metastasis, while upregulation had the opposite effect. We identified the myocyte enhancer factor 2C (MEF2C) as a transcriptional regulator of HIPK3 and uncovered HIPK3's role in downregulating the morphogenesis regulator microtubule-associated protein (MAP7) through ubiquitination. Phosphoproteome profiling revealed HIPK3's inhibitory effects on mTOR and Wnt pathways crucial in cell proliferation and movement. A combined treatment strategy involving oxaliplatin, rapamycin, and IWR1-1-endo effectively overcame platinum resistance induced by reduced HIPK3 expression. Monitoring HIPK3 levels could serve as a GC malignancy and platinum resistance indicator, with our proposed treatment strategy offering novel avenues for reversing resistance in gastric cancer.


Assuntos
Platina , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Oxaliplatina/farmacologia , Progressão da Doença , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
10.
J Agric Food Chem ; 72(1): 230-244, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38079533

RESUMO

A high calorie diet such as excessive fat and sucrose intake is always accompanied by impaired glucose homeostasis such as T2DM (type 2 diabetes mellitus). However, it remains unclear how fat and sucrose individually affect host glucose metabolism. In this study, mice were fed with high fat diet (HFD) or 30% sucrose in drinking water (HSD) for 24 weeks, and glucose metabolism, gut microbiota composition, as well as bile acid (BA) profile were investigated. In addition, the functional changes of HFD or HSD-induced gut microbiota were further verified by fecal microbiota transplantation (FMT) and ex vivo culture of gut bacteria with BAs. Our results showed that both HFD and HSD caused dysregulated lipid metabolism, while HFD feeding had a more severe effect on impaired glucose homeostasis, accompanied by reduced hyocholic acid (HCA) levels in all studied tissues. Meanwhile, HFD had a more dramatic influence on composition and function of gut microbiota based on α diversity indices, ß diversity analysis, as well as the abundance of secondary BA producers than HSD. In addition, the phenotypes of impaired glucose homeostasis and less formation of HCA caused by HFD can be transferred to recipient mice by FMT. Ex vivo culture with gut bacteria and BAs revealed HFD-altered gut bacteria produced less HCA than HSD, which might closely associate with reduced relative abundance of C7 epimerase-coding bacteria g_norank/unclassified_f_Eggerthellaceae and bile salt hydrolase-producing bacteria Lactobacillus and Bifidobacterium in HFD group. Our findings revealed that the divergent effects of different high-calorie diets on glucose metabolism may be due to the gut microbiota-mediated generation and metabolism of BAs, highlighting the importance of dietary management in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Sacarose , Metabolismo dos Lipídeos , Glucose/farmacologia , Homeostase , Ácidos e Sais Biliares/farmacologia , Camundongos Endogâmicos C57BL
11.
BMC Gastroenterol ; 23(1): 384, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950196

RESUMO

BACKGROUND: Nucleoside analogues are currently applied as a first-line treatment for chronic hepatitis B (CHB) patients. However, the long-term effects of this type of treatment on kidney and bone tissue need to be further investigated. METHODS: We conducted a search of entecavir (ETV), tenofovir disoproxil fumarate (TDF), and tenofovir alafenamide fumarate (TAF) for treatment of CHB patients through October 29, 2023. Side effects of the three drugs were compared. Standardized mean difference (SMD), 95% confidence interval (95%CI), and surface under the cumulative ranking curve (SUCRA) were reported for each outcome. Further subgroup analysis was conducted according to duration of administration. RESULTS: ETV and TAF exhibited less effect on estimated glomerular filtration rate (eGFR) than TDF (SMD = -3.60 (95%CI: -1.94 ~ -5.26) and SMD = -4.27 (95%CI: -2.62 ~ -5.93)). ETV also exhibited less effect on creatinine rise than TAF and TDF (SMD = -0.55 (95%CI: -0.09 ~ -1.01) and SMD = -0.61 (95%CI: -0.15 ~ -1.06)). Moreover, the effect of TAF on bone mineral density (BMD) was less than that of TDF (SMD = -0.02 (95%CI: -0.01 ~ -0.02)). The probabilities of the three drugs changing relevant indicators exhibited similar patterns: eGFR (TDF (100.0%) > ETV (41.2%) > TAF (8.8%)), creatinine (TDF (94.7%) > TAF (54.7%) > ETV (0.6%)), BMD (TDF (79.7%) > ETV (50.6%) > TAF (19.6%)), and blood phosphorus (TDF (90.6%) > TAF (49.8%) > ETV (9.7%)). After 6 and 24 months of treatment, no statistically significant difference in renal function or bone tissue was observed between ETV and TDF. However, greater adverse effects on renal function were observed for TDF than ETV at 60 months compared to 12 months. TDF also exhibited greater adverse effects on bone tissue than ETV at 36 months than at 12 months. CONCLUSIONS: Long-term administration of TDF has resulted in stronger adverse effects than TAF and ETV in regard to both renal function and bone tissue in CHB patients. The effect of TAF on creatinine increase was greater than ETV. The difference in side effects between ETV and TDF was independent of treatment duration.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Tenofovir/efeitos adversos , Creatinina , Metanálise em Rede , Adenina , Rim/fisiologia , Osso e Ossos , Fumaratos/farmacologia , Fumaratos/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , Antivirais/efeitos adversos , Resultado do Tratamento , Alanina/farmacologia , Alanina/uso terapêutico
12.
Adv Mater ; : e2308098, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37777858

RESUMO

Radioprotective agents hold clinical promises to counteract off-target adverse effects of radiation and benefit radiotherapeutic outcomes, yet the inability to control drug transport in human organs poses a leading limitation. Based upon a validated rank-based multigene signature model, radiosensitivity indices are evaluated of diverse normal organs as a genomic predictor of radiation susceptibility. Selective ORgan-Targeting (SORT) hafnium oxide nanoparticles (HfO2 NPs) are rationally designed via modulated synthesis by α-lactalbumin, homing to top vulnerable organs. HfO2 NPs like Hensify are commonly radioenhancers, but SORT HfO2 NPs exhibit surprising radioprotective effects dictated by unfolded ligands and Hf(0)/Hf(IV) redox couples. Still, the X-ray attenuation patterns allow radiological confirmation in target organs by dual-beam spectral computed tomography. SORT HfO2 NPs present potent antioxidant activities, catalytically scavenge reactive oxygen species, and mimic multienzyme catalytic activities. Consequently, SORT NPs rescue radiation-induced DNA damage in mouse and rabbit models and provide survival benefits upon lethal exposures. In addition to inhibiting radiation-induced mitochondrial apoptosis, SORT NPs impede DNA damage and inflammation by attenuating activated FoxO, Hippo, TNF, and MAPK interactive cascades. A universal methodology is proposed to reverse radioenhancers into radioprotectors. SORT radioprotective agents with image guidance are envisioned as compelling in personalized shielding from radiation deposition.

13.
Cancer Commun (Lond) ; 43(12): 1312-1325, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37837629

RESUMO

BACKGROUND: Circulating tumor DNA (ctDNA) is a promising biomarker for predicting relapse in multiple solid cancers. However, the predictive value of ctDNA for disease recurrence remains indefinite in locoregional gastric cancer (GC). Here, we aimed to evaluate the predictive value of ctDNA in this context. METHODS: From 2016 to 2019, 100 patients with stage II/III resectable GC were recruited in this prospective cohort study (NCT02887612). Primary tumors were collected during surgical resection, and plasma samples were collected perioperatively and within 3 months after adjuvant chemotherapy (ACT). Somatic variants were captured via a targeted sequencing panel of 425 cancer-related genes. The plasma was defined as ctDNA-positive only if one or more variants detected in the plasma were presented in at least 2% of the primary tumors. RESULTS: Compared with ctDNA-negative patients, patients with positive postoperative ctDNA had moderately higher risk of recurrence [hazard ratio (HR) = 2.74, 95% confidence interval (CI) = 1.37-5.48; P = 0.003], while patients with positive post-ACT ctDNA showed remarkably higher risk (HR = 14.99, 95% CI = 3.08-72.96; P < 0.001). Multivariate analyses indicated that both postoperative and post-ACT ctDNA positivity were independent predictors of recurrence-free survival (RFS). Moreover, post-ACT ctDNA achieved better predictive performance (sensitivity, 77.8%; specificity, 90.6%) than both postoperative ctDNA and serial cancer antigen. A comprehensive model incorporating ctDNA for recurrence risk prediction showed a higher C-index (0.78; 95% CI = 0.71-0.84) than the model without ctDNA (0.71; 95% CI = 0.64-0.79; P = 0.009). CONCLUSIONS: Residual ctDNA after ACT effectively predicts high recurrence risk in stage II/III GC, and the combination of tissue-based and circulating tumor features could achieve better risk prediction.


Assuntos
DNA Tumoral Circulante , Neoplasias Gástricas , Humanos , Quimioterapia Adjuvante , DNA Tumoral Circulante/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Estudos Prospectivos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/cirurgia , Estudos de Coortes
14.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762128

RESUMO

Up to 50% of hepatocellular carcinoma (HCC) is caused by hepatitis B virus (HBV) infection, and the surface protein of HBV is essential for the progression of HBV-related HCC. The expression of large HBV surface antigen (LHB) is presented in HBV-associated HCC tissues and is significantly associated with the development of HCC. Gene set enrichment analysis revealed that LHB overexpression regulates the cell cycle process. Excess LHB in HCC cells induced chronic endoplasmic reticulum (ER) stress and was significantly correlated with tumor growth in vivo. Cell cycle analysis showed that cell cycle progression from G1 to S phase was greatly enhanced in vitro. We identified intensive crosstalk between ER stress and cell cycle progression in HCC. As an important regulator of the G1/S checkpoint, p27 was transcriptionally upregulated by transcription factors ATF4 and XBP1s, downstream of the unfolded protein response pathway. Moreover, LHB-induced ER stress promoted internal ribosome-entry-site-mediated selective translation of p27, and E3 ubiquitin ligase HRD1-mediated p27 ubiquitination and degradation. Ultimately, the decrease in p27 protein levels reduced G1/S arrest and promoted the progress of HCC by regulating the cell cycle.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Inibidor de Quinase Dependente de Ciclina p27 , Hepatite B/complicações , Vírus da Hepatite B , Fatores Imunológicos , Neoplasias Hepáticas/genética , Proteínas de Membrana , Resposta a Proteínas não Dobradas
15.
Environ Sci Technol Lett ; 10(9): 755-761, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37719205

RESUMO

Fluoroalkylether substances (ether PFAS) constitute a large group of emerging PFAS with uncertain environmental fate. Among them, GenX is the well-known alternative to perfluorooctanoic acid and one of the six proposed PFAS to be regulated by the U.S. Environmental Protection Agency. This study investigated the structure-biodegradability relationship for 12 different ether PFAS with a carboxylic acid headgroup in activated sludge communities. Only polyfluorinated ethers with at least one -CH2- moiety adjacent to or a C=C bond in the proximity of the ether bond underwent active biotransformation via oxidative and hydrolytic O-dealkylation. The bioreactions at ether bonds led to the formation of unstable fluoroalcohol intermediates subject to spontaneous defluorination. We further demonstrated that this aerobic biotransformation/defluorination could complement the advanced reduction process in a treatment train system to achieve more cost-effective treatment for GenX and other recalcitrant perfluorinated ether PFAS. These findings provide essential insights into the environmental fate of ether PFAS, the design of biodegradable alternative PFAS, and the development of cost-effective ether PFAS treatment strategies.

16.
Nat Commun ; 14(1): 5451, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673856

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is usually characterized with disrupted bile acid (BA) homeostasis. However, the exact role of certain BA in NAFLD is poorly understood. Here we show levels of serum hyodeoxycholic acid (HDCA) decrease in both NAFLD patients and mice, as well as in liver and intestinal contents of NAFLD mice compared to their healthy counterparts. Serum HDCA is also inversely correlated with NAFLD severity. Dietary HDCA supplementation ameliorates diet-induced NAFLD in male wild type mice by activating fatty acid oxidation in hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent way because the anti-NAFLD effect of HDCA is abolished in hepatocyte-specific Pparα knockout mice. Mechanistically, HDCA facilitates nuclear localization of PPARα by directly interacting with RAN protein. This interaction disrupts the formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer. Our results demonstrate the therapeutic potential of HDCA for NAFLD and provide new insights of BAs on regulating fatty acid metabolism.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/genética , Ácidos e Sais Biliares , Citoplasma , Camundongos Knockout , Ácidos Graxos
17.
Mol Cancer Res ; 21(10): 1107-1119, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37409971

RESUMO

Gastric cancer is one of the most frequent cancers in the world. Emerging clinical data show that ubiquitination system disruptions are likely involved in carcinoma genesis and progression. However, the precise role of ubiquitin (Ub)-mediated control of oncogene products or tumor suppressors in gastric cancer is unknown. Tripartite motif-containing 50 (TRIM50), an E3 ligase, was discovered by high-output screening of ubiquitination-related genes in tissues from patients with gastric cancer to be among the ubiquitination-related enzymes whose expression was most downregulated in gastric cancer. With two different databases, we verified that TRIM50 expression was lower in tumor tissues relative to normal tissues. TRIM50 also suppressed gastric cancer cell growth and migration in vitro and in vivo. JUP, a transcription factor, was identified as a new TRIM50 ubiquitination target by MS and coimmunoprecipitation experiments. TRIM50 increases JUP K63-linked polyubiquitination mostly at the K57 site. We discovered that the K57 site is critical for JUP nuclear translocation by prediction with the iNuLoC website and further studies. Furthermore, ubiquitination of the K57 site limits JUP nuclear translocation, consequently inhibiting the MYC signaling pathway. These findings identify TRIM50 as a novel coordinator in gastric cancer cells, providing a potential target for the development of new gastric cancer treatment strategies. IMPLICATIONS: TRIM50 regulates gastric cancer tumor progression, and these study suggest TRIM50 as a new cancer target.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , gama Catenina/genética , gama Catenina/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo
18.
STAR Protoc ; 4(3): 102398, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37405927

RESUMO

Here, we present a protocol for the complete stereoselective synthesis of a molecular 51 knot. Enantiopure chiral ligands serve as the starting point, while Zn(OTf)2 acts as the template, facilitating the quantitative formation of pentameric circular helicates with 100% d.e. A subsequent sequence of ring-closing metathesis and demetalation steps transforms the structure into a fully organic 51 knot. This protocol expands the scope of strategies employed for chiral knot preparation and paves the way for more complex molecular topologies. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.


Assuntos
Potentilla , Compostos de Zinco , Mesilatos
19.
Cancer Commun (Lond) ; 43(9): 981-1002, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37405956

RESUMO

BACKGROUND: The mechanism of hepatitis B virus (HBV)-induced carcinogenesis remains an area of interest. The accumulation of hepatitis B surface antigen in the endoplasmic reticulum (ER) of hepatocytes stimulates persistent ER stress. Activity of the unfolded protein response (UPR) pathway of ER stress may play an important role in inflammatory cancer transformation. How the protective UPR pathway is hijacked by cells as a tool for malignant transformation in HBV-related hepatocellular carcinoma (HCC) is still unclear. Here, we aimed to define the key molecule hyaluronan-mediated motility receptor (HMMR) in this process and explore its role under ER stress in HCC development. METHODS: An HBV-transgenic mouse model was used to characterize the pathological changes during the tumor progression. Proteomics and transcriptomics analyses were performed to identify the potential key molecule, screen the E3 ligase, and define the activation pathway. Quantitative real-time PCR and Western blotting were conducted to detect the expression of genes in tissues and cell lines. Luciferase reporter assay, chromatin immunoprecipitation, coimmunoprecipitation, immunoprecipitation, and immunofluorescence were employed to investigate the molecular mechanisms of HMMR under ER stress. Immunohistochemistry was used to clarify the expression patterns of HMMR and related molecules in human tissues. RESULTS: We found sustained activation of ER stress in the HBV-transgenic mouse model of hepatitis-fibrosis-HCC. HMMR was transcribed by c/EBP homologous protein (CHOP) and degraded by tripartite motif containing 29 (TRIM29) after ubiquitination under ER stress, which caused the inconsistent expression of mRNA and protein. Dynamic expression of TRIM29 in the HCC progression regulated the dynamic expression of HMMR. HMMR could alleviate ER stress by increasing autophagic lysosome activity. The negative correlation between HMMR and ER stress, positive correlation between HMMR and autophagy, and negative correlation between ER stress and autophagy were verified in human tissues. CONCLUSIONS: This study identified the complicated role of HMMR in autophagy and ER stress, that HMMR controls the intensity of ER stress by regulating autophagy in HCC progression, which could be a novel explanation for HBV-related carcinogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Estresse do Retículo Endoplasmático/genética , Vírus da Hepatite B/genética , Camundongos Transgênicos , Carcinogênese , Proteínas de Ligação a DNA , Fatores de Transcrição
20.
Food Environ Virol ; 15(3): 236-245, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306924

RESUMO

Enterobacter cloacae is a widespread opportunistic pathogen that causes urinary tract infection. The abuse of antibiotics enabled multidrug-resistant strains to spread. Bacteriophage therapy is a naturally, safe, and efficient alternative treatment technology against multi-resistant bacteria. In this study, a virulent phage vB_EclM_Q7622 (Q7622) was isolated from the sewage of Jiangcun poultry market in Guangzhou city. Transmission electron microscopy indicated that Q7622 had an icosahedral head (97.8 ± 5.6 nm in diameter) and a short, contractile tail (113.7 ± 4.5 nm). Its double-stranded DNA genome is composed of 173,871 bp with a GC content of 40.02%. It possesses 297 open reading frames and 9 tRNAs. No known virulence and resistance genes were detected, indicated that phage Q7622 could be used for pathogens prevention and control safely. Comparative genomic and phylogenetic analysis showed that Q7622 was highly similar to the phages vB_EclM_CIP9 and vB_EhoM-IME523. The highest nucleotide similarity between Q7622 and the similar phages in NCBI calculated by pyANI and VIRIDIC were 94.9% and 89.1% with vB_EhoM-IME523 respectively, below 95%. Thus, according to the result of nucleotide similarity calculation results, Q7622 was a novel virulent Enterobacter cloacae phage strain of the genus Kanagawavirus.


Assuntos
Bacteriófagos , Enterobacter cloacae , Enterobacter cloacae/genética , Filogenia , Genoma Viral , Bacteriófagos/genética , Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA